Wireless Engineering and Complexity Science lab (WhyCOM)

Future Wireless Systems

Recently machine-to-machine communications has emerged as an enabling technology for the practical realization of Internet-of-Things (IoT). Such networks face several challenges like connectivity among large number of machines with diverse functionalities, wide coverage area, resource and QoS constraints. Dr Indrakshi Dey leads the project FD-M2Mcomm, a cross-layer full-duplex design will be proposed to address the above-mentioned challenges of machine-to-machine communication systems.

The IoT will see the transmission of huge quantities of sensitive personal information that require security. Unfortunately, most IoT devices rely on small, low-cost and battery-operated platforms, with very limited computational power. Such simplistic hardware does not support state-of-the-art cryptography. The project Wireless-SPIne is a radical new approach to ensure IoT security in physical layer, led by Dr Adam Narbudowicz.

5G is expected to cater to numerous different vertical industries and use-cases which present a diverse range of requirements to the network. This necessitates a flexible network that is characterised by its versatility and ability to adapt to different services. As part of his PhD, Conor Sexton focuses on ways to introduce this flexibility into future networks, chiefly by using the concept of resource slicing.

The architecture of device caching exploits the large storage available in modern smartphones to cache multimedia files that might be highly demanded by the devices. The scope of Ramy Amer‘s PhD work is to investigate and maximize the cache offloading gain via coordinated multi-point (CoMP) transmission for a clustered Device-to-Device (D2D) caching network.

The wide spectrum available in millimetre-wave (mmWave) frequencies is the key to enhance the wireless communication data rates for 5G mobile networks. In his PhD, Fadhil Firyaguna is studying the characterization of optimal network deployments of mmWave networks considering the human body blockage effects on such networks.

Application of Complex Systems Science to Wireless Systems

Dr Harun Siljak leads the project COCODIMM, which aims at observing Distributed Massive MIMO as a complex system with rich spatio-temporal dynamics. Complex systems science, control and nonlinear dynamics meet reversible computation and hardware design in the process of understanding the physics and the engineering of massive MIMO.

A number of trends in 5G and IoT systems – denser networks, multi-ownership, resource sharing, NFV, SDN, to name just a few – are changing the organizational structure of telecom network from a rigid and static to a dynamic system. Merim Dzaferagic‘s PhD work relies on Information and Complexity Theory, Network Science and Agent-Based Modelling, to better understand how distributed intelligence emerges and affects the network operation.

See also the TRICKLE team website.